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1
EXTRACTION AND MATCHING OF
CHARACTERISTIC FINGERPRINTS FROM
AUDIO SIGNALS

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of U.S. application Ser.
No. 11/219,385, filed Sep. 1, 2005, which is incorporated by
reference in its entirety.

This application is a continuation of and claims the benefit
of U.S. patent application Ser. No. 12/392,062, filed Feb. 24,
2009, entitled “Extraction and Matching of Characteristic
Fingerprints from Audio Signals”, now U.S. Pat. No. 8,396,
705, and which is incorporated in full herein by reference.

BACKGROUND

The present invention relates generally to audio signal
processing, and more particularly to extracting characteristic
fingerprints from audio signals and to searching a database of
such fingerprints.

Because of the variations in file formats, compression tech-
nologies, and other methods of representing data, the problem
of identifying a data signal or comparing it to others raises
significant technical difficulties. For example, in the case of
digital music files on a computer, there are many formats for
encoding and compressing the songs. In addition, the songs
are often sampled into digital form at different data rates and
have different characteristics (e.g., different waveforms).
Recorded analog audio also contains noise and distortions.
These significant waveform differences make direct compari-
son of such files a poor choice for efficient file or signal
recognition or comparison. Direct file comparison also does
not allow comparison of media encoded in different formats
(e.g., comparing the same song encoded in MP3 and WAV).

For these reasons, identifying and tracking media and other
content, such as that distributed over the Internet, is often
done by attaching metadata, watermarks, or some other code
that contains identification information for the media. But this
attached information is often incomplete, incorrect, or both.
For example, metadata is rarely complete, and filenames are
even more rarely uniform. In addition, approaches such as
watermarking are invasive, altering the original file with the
added data or code. Another drawback of these approaches is
that they are vulnerable to tampering. Even if every media file
were to include accurate identification data such as metadata
or a watermark, the files could be “unlocked” (and thus
pirated) if the information were successfully removed.

To avoid these problems, other methods have been devel-
oped based on the concept of analyzing the content of a data
signal itself. In one class of methods, an audio fingerprint is
generated for a segment of audio, where the fingerprint con-
tains characteristic information about the audio that can be
used to identify the original audio. In one example, an audio
fingerprint comprises a digital sequence that identifies a frag-
ment of audio. The process of generating an audio fingerprint
is often based on acoustical and perceptual properties of the
audio for which the fingerprint is being generated. Audio
fingerprints typically have a much smaller size than the origi-
nal audio content and thus may be used as a convenient tool to
identify, compare, and search for audio content. Audio fin-
gerprinting can be used in a wide variety of applications,
including broadcast monitoring, audio content organization,
filtering of content of P2P networks, and identification of
songs or other audio content. As applied to these various
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2
areas, audio fingerprinting typically involves fingerprint
extraction as well as fingerprint database searching algo-
rithms.

Most existing fingerprinting techniques are based on
extracting audio features from an audio sample in the fre-
quency domain. The audio is first segmented into frames, and
for every frame a set of features is computed. Among the
audio features that can be used are Fast Fourier Transform
(FFT) coefficients, Mel Frequency Cepstral Coefficients
(MFCC), spectral flatness, sharpness, Linear Predictive Cod-
ing (LPC) coefficients, and modulation frequency. The com-
puted features are assembled into a feature vector, which is
usually transformed using derivatives, means, or variances.
The feature vector is mapped into a more compact represen-
tation using algorithms such as Hidden Markov Model or
Principal Component Analysis, followed by quantization, to
produce the audio fingerprint. Usually, a fingerprint obtained
by processing a single audio frame has a relatively small size
and may not be sufficiently unique to identify the original
audio sequence with the desired degree of reliability. To
enhance fingerprint uniqueness and thus increase the prob-
ability of correct recognition (and decrease false positive
rate), small sub fingerprints can be combined into larger
blocks representing about three to five seconds of audio.

One fingerprinting technique, developed by Philips, uses a
short-time Fourier Transform (STFT) to extract a 32-bit sub-
fingerprint for every interval of 11.8 milliseconds of an audio
signal. The audio signal is first segmented into overlapping
frames 0.37 seconds long, and the frames are weighed by a
Hamming window with an overlap factor of 31/32 and trans-
formed into the frequency domain using a FFT. The fre-
quency domain data obtained may be presented as a spectro-
gram (e.g., a time-frequency diagram), with time on the
horizontal axis and frequency on the vertical axis. The spec-
trum of every frame (spectrogram column) is segmented into
33 non-overlapping frequency bands in the range of300 Hz to
2000 Hz, with logarithmic spacing. The spectral energy in
every band is calculated, and a 32-bit sub-fingerprint is gen-
erated using the sign of the energy difference in consecutive
bands along the time and frequency axes. If the energy dif-
ference between two bands in one frame is larger that energy
difference between the same bands in the previous frame, the
algorithm outputs “1” for the corresponding bit in the sub-
fingerprint; otherwise, it outputs “0” for the corresponding
bit. A fingerprint is assembled by combining 256 subsequent
32-bit sub-fingerprints into single fingerprint block, which
corresponds to three seconds of audio.

Although designed to be robust against common types of
audio processing, noise, and distortions, this algorithm is not
very robust against large speed changes because of the result-
ing spectrum scaling. Accordingly, a modified algorithm was
proposed in which audio fingerprints are extracted in the
scale-invariant Fourier-Mellin domain. The modified algo-
rithm includes additional steps performed after transforming
the audio frames into the frequency domain. These additional
steps include spectrum log-mapping followed by a second
Fourier transform. For every frame, therefore, a first FFT is
applied, the result is log-mapped obtained a power spectrum,
and a second FFT is applied. This can be described as the
Fourier transform of the logarithmically resampled Fourier
transform, and it is similar to well known MFCC methods
widely used in speech recognition. The main difference is that
Fourier-Mellin transform uses log-mapping of whole spec-
trum, while MFCC is based on the mel-frequency scale (lin-
ear up to 1 kHz and has log spacing for higher frequencies,
mimicking the properties of the human auditory system).
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The Philips algorithm falls into a category of so-called
short-term analysis algorithms because the sub-fingerprints
are calculated using spectral coefficients of just two consecu-
tive frames. There are other algorithms that extract spectral
features using multiple overlapped FFT frames in the spec-
trogram. Some of the methods based on evaluation of mul-
tiple frames in time are known as long-term spectrogram
analysis algorithms.

One long-term analysis algorithm, described for example
in Sukittanon, “Modulation-Scale Analysis for Content Iden-
tification,” IEEE Transactions on Signal Processing, vol. 52,
no. 10 (October 2004), is based on the estimation of modu-
lation frequencies. In this algorithm, the audio is segmented
and a spectrogram is computed for it. A modulation spectrum
is then calculated for each spectrogram band (e.g., a range of
frequencies in the spectrogram) by applying a second trans-
form along the temporal row (e.g., the horizontal axis) of the
spectrogram. This is different from the modified Philips
approach, in which the second FFT is applied along the fre-
quency column of the spectrogram (e.g., the vertical axis). In
this approach, the spectrogram is segmented into N frequency
bands, and the same number N of continuous wavelet trans-
forms (CWT) are calculated, one for each band.

Although the developers of this algorithm claim superior
performance compared to the Philips algorithm, existing
algorithms still exhibit a number of deficiencies. For
example, the algorithms may not be sufficiently robust to
identify distorted speech and music reliably, especially when
the audio is compressed using a CELP audio codec (e.g.,
associated with cell phone audio, such as GSM). Moreover,
these algorithms are generally sensitive to noise and analog
distortions, such as those associated with a microphone
recording. And even if the algorithms can identify audio in
presence of single type of distortion, they may not be able to
handle a combination of multiple distortions, which is more
common and closer to a real world scenario (e.g., as with a
cell phone, audio recorded from a microphone in a noisy
room with light reverberation followed by GSM compres-
sion).

When applied to practical applications, therefore, existing
fingerprinting schemes have unacceptably high error rates
(e.g., false positives and false negatives), produce fingerprints
that are too large to be commercially viable, and/or are too
slow. Accordingly, there exists a need to overcome existing
limitations that current audio recognition techniques have
failed to solve.

SUMMARY OF THE INVENTION

Accordingly, the present invention enables a characteristic
fingerprint to be extracted from an audio signal based on the
content of that signal. This fingerprint can be matched against
a set of reference fingerprints (e.g., in a database) to deter-
mine the identity of the signal or the similarity between two
signals. Because of the nature of the fingerprint extraction
algorithm, it does not suffer from many of the problems that
plague existing solutions, and as compared to such solutions
it is fast, efficient, highly accurate, scalable, and robust.

In an embodiment of a method for generating an audio
fingerprint, an audio signal is sampled and spectrogram infor-
mation is computed from the signal. The spectrogram is
divided into a plurality of frequency bands. The sequences
samples in each of the bands are logarithmically re-sampled,
causing a log-mapping of the band samples. A second FFT is
then applied to the log-mapped band samples to obtain a
feature vector for each band. The audio fingerprint is then
computed based on the feature vectors. The audio fingerprint
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4

may be stored on a computer readable medium or may be
fixed momentarily as a transmissible signal.

Unlike previous audio fingerprinting schemes, embodi-
ments of the invention extract a long-term feature vector from
a series of frequency band samples non-linearly (e.g., loga-
rithmically) spaced in time. Although previous methods have
used log mapping along the frequency axis of the spectrogram
(e.g., the Fourier-Mellin transform and the bark scale), they
have used a linear time scale. In contrast, in embodiments of
the invention, the use of a nonlinear (e.g., logarithmic) time
scale for processing the sub-band samples can significantly
improve the robustness of the fingerprint extraction and
matching algorithms.

For example, time log-mapping of the sub-band samples
makes the algorithm less sensitive to variations in audio play-
back speed and time compression and stretching. This is
because the logarithmic resampling causes any scaling in the
playback speed to be a linear shift in the log-mapped spec-
trogram, and the linear shift is removed by the FFT. In this
way, the fingerprint of an audio signal should have little or no
variation regardless of variations in its playback speed or due
to time compression or stretching. The usage of the logarith-
mic time scale also improves the low frequency resolution of
the second time-frequency FFT transform. This allows the
use of a simple FFT instead of complex wavelet transforms
used for analysis of the spectrogram modulation spectrum,
making the implementation more efficient and faster com-
pared to previous methods.

Moreover, because of the nonlinear (e.g., logarithmic) res-
caling in time, the band output frame contains, for the most
part, samples that represent the beginning of the analyzed
audio sequence. The resulting fingerprint is thus generated
using samples primarily located at the beginning of the
sequence. Since a relatively small part of the audio sequence
make the most contribution in the resulting fingerprint, the
fingerprint may be used to match shorter audio sequences. In
one implementation, for example, a fingerprint generated
from a five-second original audio frame can be reliably
matched to samples taken from audio fragments that are twice
as short.

Embodiments of the fingerprinting techniques are also tol-
erant to noise and signal distortions. One implementation can
detect speech-like signals in the presence of 100% of white
noise (i.e., a signal to noise ration of 0 db). The techniques are
also tolerant to filtering, compression, frequency equaliza-
tion, and phase distortions. For example, an embodiment of
the invention is able to recognize reliably audio that has a
+5% variation in pitch (under conditions of preserved tempo)
and a £20% variation in timing (under conditions of pre-
served pitch).

In another embodiment, where the generated fingerprint
frame is formed using a specified number of frequency bands,
an acoustic model is used to mark insignificant frequency
bands. Insignificant bands may include bands that do not add
substantially any perceptible value in distinguishing the
audio sample. Processing only relevant frequency bands
increases the signal to noise ratio and improves robustness of
the overall fingerprint matching process. Moreover, exclud-
ing irrelevant frequency bands can greatly improve the rec-
ognition efficiency of band-limited audio content, for
example in case of speech encoded at very low bit rate or
analog recordings with slow tape speed.

Embodiments of the invention also provide for fast index-
ing and efficient searching for fingerprints in a large-scale
database. For example, an index for each audio fingerprint
may be computed from a portion of the fingerprint’s contents.
In one embodiment, a set of bits from a fingerprint is used as



US 9,208,790 B2

5

the fingerprint’s index, where the bits correspond to the more
stable low frequency coefficients due to the non-linear (e.g.,
logarithmic) resampling. To match a test fingerprint with a set
of fingerprints in a database, the test fingerprint may be
matched against the indexes to obtain a group of candidate
fingerprints. The test fingerprint is then matched against the
candidate fingerprints, thereby avoiding the need to match the
test fingerprint against every fingerprint in the database.

In another embodiment, an edge detection algorithm is
used to determine the exact edges of an analyzed audio frame
or fragment. In some applications, especially when audio
samples differ only during short time periods of the overall
samples, knowing the location of the edge of the analyzed
audio frame within the audio sample is important. The edge
detection algorithm may use linear regression techniques to
identify the edge of an audio frame.

Applications of embodiments of the fingerprinting tech-
nology are numerous, and they include the real-time identi-
fication of audio streams and other audio content (e.g.,
streaming media, radio, advertisements, Internet broadcasts,
songs in CDs, MP3 files, or any other type of audio content).
Embodiments of the invention thus enable efficient, real-time
media content auditing and other reporting.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic drawing of a process for extracting
and using a fingerprint from an audio sample, in accordance
with an embodiment of the invention.

FIG. 2 is a schematic diagram of a fingerprint extraction
system, in accordance with an embodiment of the invention.

FIG. 3 is a flow diagram of a matching algorithm, in accor-
dance with an embodiment of the invention.

FIG. 4 illustrates an edge detection algorithm, in accor-
dance with an embodiment of the invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

Overview

Embodiments of the invention enable the extraction of
characteristic information (e.g., an audio fingerprint) from a
sample of audio as well as the matching or identification of
the audio using that extracted characteristic information. As
illustrated in FIG. 1, a frame 105 of audio taken from an audio
sample 100 is input into a fingerprint extraction algorithm
110. The audio sample 100 may be provided by any of a wide
variety of sources. Using the sequence of audio frames 105,
the fingerprint extraction algorithm 110 generates one or
more audio fingerprints 115 that are characteristic of the
sequence. Serving as a distinguishing identifier, the audio
fingerprint 115 provides information relating to the identity
or other characteristics of the sequence of frames 105 of the
audio sample 100. In particular, one or more fingerprints 115
for the audio sample 100 may allow the audio sample 100 to
be uniquely identified. Embodiments of the fingerprint
extraction algorithm 110 are described in more detail below.

Once generated, the extracted fingerprint 115 can then be
used in a further process or stored on a medium for later use.
For example, the fingerprint 115 can be used by a fingerprint
matching algorithm 120, which compares the fingerprint 115
with entries in a fingerprint database 125 (e.g., a collection of
audio fingerprints from known sources) to determine the
identity of the audio sample 100. Various methods for using
the fingerprints are also described below.
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The audio sample 100 may originate from any of a wide
variety of sources, depending on the application of the fin-
gerprinting system. In one embodiment, the audio sample 100
is sampled from a broadcast received from a media broad-
caster and digitized. Alternatively, a media broadcaster may
transmit the audio in digital form, obviating the need to digi-
tize it. Types of media broadcasters include, but are not lim-
ited to, radio transmitters, satellite transmitters, and cable
operators. The fingerprinting system can thus be used to audit
these broadcasters to determine what audio are broadcast at
what times. This enables an automated system for ensuring
compliance with broadcasting restrictions, licensing agree-
ments, and the like. Because the fingerprint extraction algo-
rithm 110 may operate without having to know the precise
beginning and ending of the broadcast signals, it can operate
without the cooperation or knowledge of the media broad-
caster to ensure independent and unbiased results.

In another embodiment, a media server retrieves audio files
from a media library and transmits a digital broadcast over a
network (e.g., the Internet) for use by the fingerprint extrac-
tion algorithm 110. A streaming Internet radio broadcast is
one example of this type of architecture, where media, adver-
tisements, and other content is delivered to an individual or to
a group of users. In such an embodiment, the fingerprint
extraction algorithm 110 and the matching algorithm 120
usually do not have any information regarding the beginning
or ending times of individual media items contained within
the streaming content of the audio sample 100; however, these
algorithms 110 and 120 do not need this information to iden-
tify the streaming content.

In another embodiment, the fingerprint extraction algo-
rithm 110 receives the audio sample 100, or a series of frames
105 thereof, from a client computer that has access to a
storage device containing audio files. The client computer
retrieves an individual audio file from the storage and sends
the file to the fingerprint extraction algorithm 110 for gener-
ating one or more fingerprints 115 from the file. Alternatively,
the client computer may retrieve a batch of files from storage
140 and sends them sequentially to the fingerprint extractor
110 for generating a set of fingerprints for each file. (As used
herein, “set” is understood to include any number of items in
a grouping, including a single item.) The fingerprint extrac-
tion algorithm 110 may be performed by the client computer
or by a remote server coupled to the client computer over a
network.

Algorithm

One embodiment of a fingerprint extraction system 200
that implements the fingerprint extraction algorithm 110
shown in FIG. 1 is illustrated in FIG. 2. The fingerprint
extraction system 200 comprises an analysis filterbank 205,
which is coupled to a plurality of processing channels (each
including one or more processing modules, labeled here as
elements 210 and 215), which are in turn coupled to a difter-
ential encoder 225 for producing an audio fingerprint 115.
The fingerprint extraction system 200 is configured to receive
an audio frame 105, for which an audio fingerprint is to be
generated.

Described in more detail below, for every input audio
frame 105 the analysis filterbank 205 generally computes
power spectrum information for a received signal across a
range of frequencies. In the embodiment shown, each pro-
cessing channel corresponds to a frequency band within that
range of frequencies, which bands may overlap. Accordingly,
the channels divide the processing performed by the finger-
print extraction system 200 so that each channel performs the
processing for a corresponding band. In other embodiments,
the processing for the plurality of bands may be performed in



US 9,208,790 B2

7

a single channel by a single module, or the processing may be
divided in any other configuration as appropriate for the
application and technical limitations of the system.

The analysis filterbank 205 receives an audio frame 105
(such as the frame 105 from the audio sample 100 illustrated
in FIG. 1). The analysis filterbank 205 converts the audio
frame 105 from the time domain into the frequency domain to
compute power spectrum information for the frame 105 over
a range of frequencies. In one embodiment, the power spec-
trum for the signal in a range of about 250 to 2250 Hz is split
into a number of frequency bands (e.g., M bands, where
M=13). The bands may have a linear or a logarithmic mid-
frequency distribution (or any other scale) and also may over-
lap. The output of the filterbank contains a measure of the
energy of the signal for each of a plurality of bands. In one
embodiment, the measure of the average energy is taken using
the cubic root of the average spectral energy in the band.

Various implementations of the analysis filterbank 205 are
possible, depending on the software and hardware require-
ments and limitations of the system. In one embodiment, the
analysis filterbank 205 comprises a number of band-pass
filters that isolate the signal of the audio frame 105 for each of
the frequency bands followed by energy estimation and down
sampling. In another embodiment, the analysis filterbank 205
is implemented using a short-time Fast Fourier Transform
(FFT). For example, the audio 100 sampled at 8 kHz is seg-
mented into 64-ms frames 105 (i.e., 512 samples). The power
spectrum of each 50% overlapped segment consisting of two
audio frames 105 (i.e. 1024 samples) is then calculated by
Han windowing and performing an FFT, followed by band
filtering using M evenly or logarithmically spaced overlapped
triangle windows.

In one embodiment, the power spectrum is averaged within
frequency bands and only changes of energy in frame
sequence are taken for calculation of the feature vectors for
some embodiments (described below). Due to the usage of
the energy change instead of the absolute magnitude and to
the low requirements to spectral characteristics of the filter-
bank 205, a variety of time-frequency domain transforms
may be used instead of the FFT described above. For
example, a Modified Discrete Cosine Transtorm (MDCT)
may be used. One advantage of the MDCT is its low com-
plexity, as is may be computed using only one n/4 point FFT
and some pre- and post-rotation of the samples. Accordingly,
a filterbank 205 implemented with MDCT is expected to
perform better than one implemented with a FFT, e.g., able to
calculate transforms twice as fast.

In another embodiment, the analysis filterbank 205 is
implemented using the MP3 hybrid filterbank, which
includes a cascading polyphase filter and a MDCT followed
by aliasing cancellation. The MP3 filterbank produces 576
spectral coefficients for every frame 105 of audio consisting
of 576 samples. For audio sampled at 8 kHz, the resulting
frame rate is 13.8 fps compared to 15.626 fps of a 1024-point
FFT filterbank described above. The frame rate difference is
set off during the time-frequency analysis when the data are
resampled, as discussed below. The analysis filterbank 205
may also be implemented using a Quadrature Mirror Filter
(QMF). The first stage of MP3 hybrid filterbank employs a
QMF filter with 32 equal-width bands. Accordingly, the 250
to 2250-Hz frequency range of an 11,025-Hz audio signal
may thus be divided into 13 bands.

One advantage of the MP3 filterbank is its portability.
There are highly optimized implementations of MP3 filter-
banks for different CPUs. Accordingly, the fingerprint gen-
eration routine can be easily integrated with the MP3 encoder,
which may obtain spectral coefficients from the MP3 filter-
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bank without additional processing. Accordingly, the finger-
print generation routine can be easily integrated with the MP3
decoder, which may obtain spectral data directly from a MP3
bit stream without its complete decoding. Integration with
other audio codecs is also possible.

Once it is determined, the sub-band samples are buffered
and provided to one or more nonlinear resamplers 210. In one
embodiment, each nonlinear resampler 210 corresponds to
one of the M frequency bands. Each nonlinear resampler 210
thus receives a sequence of S samples for a particular fre-
quency band linearly spaced in time (e.g., where S is selected
to be from 64 to 80, depending on the filterbank’s implemen-
tation). In one embodiment, each resampler 210 logarithmi-
cally maps the sub-band samples in one of the M bands,
producing a series of T samples (e.g., where T=64) that are
logarithmically spaced in time. When this is performed for
each of the M bands, the data can be stored in a [ MxT] matrix,
which corresponds to a sampled spectrogram having a time
(horizontal) axis with logarithmic scale. Logarithmic sam-
pling is just one possibility, however, and in other embodi-
ments other types of nonlinear sampling may be performed,
such as exponential resampling.

The sub-band samples are then provided to one or more
FFT modules 215, which perform a transform on the nonlin-
early mapped samples for each band. In one embodiment, a
T-point FFT is performed on the log-mapped band samples
for each band (e.g., each row of the [MxT] matrix). The
resulting series of coefficients from the FFT is called a feature
vector. In one embodiment, the feature vector for each band
comprises every other coefficient of the FFT computed for
that band in order of ascending frequency. Accordingly, each
feature vector would include N coefficients (e.g., where N=T/
2=32).

Although the FFT modules 215 are described as perform-
ing a FFT on the sub-band samples, in other embodiments the
FFT modules 215 are replaced by processing modules that
perform other time-frequency transforms. For example,
instead of the FFT, the Discrete Cosine Transform (DCT) or
the Discrete Hartley Transform (DHT) may be used to trans-
form the sub-band samples. In particular, using the DHT
tends to produce a low false positive rate and de-correlated
index values, which helps to make the search algorithm faster.
In another embodiment, linear prediction coding is used as
the second transform in place of the FFT modules 215.

The feature vectors are then provided to a differential
encoder 225, which generates a fingerprint 115 for the audio
sample. In one embodiment, the differential encoder 225
subtracts the feature vectors corresponding to each pair of
adjacent bands. If there are M bands, there are M-1 pairs of
adjacent bands. Subtracting two feature vectors gives a vector
of N difference values. For each ofthese difference values, the
differential encoder 225 selects a 1 if the difference is greater
than or equal to 0, and the differential encoder 225 selects a 0
is the difference is less than 0. For each group of four bits in
the sequence, the encoder assigns a bit value according to a
codebook table. The best codebook values are calculated
during tuning and training of the fingerprinting algorithm.
Repeating this process for the feature vectors of each of the
consecutive pairs of bands results in a [(M-1)xN/4]| matrix of
bits. This matrix, which can be represented as a linear bit
sequence, is used as the audio fingerprint 115. In the example
where M=13 and N=S8, the fingerprint 115 has 12 bytes of
information.

In one embodiment, the Principal Component Analysis
(PCA) is used to de-correlate and reduce size of the obtained
feature vector before it is quantized. Other de-correlation
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techniques, such the Digital Cosine Transform, may be used
in addition or alternatively to eliminate redundancy and com-
pact the feature vector.

In one embodiment, the fingerprint extraction system 200
generates a plurality of fingerprints for a highly overlapped
series of audio frames in a particular audio signal. In one
example, each series of frames 105 processed by the system
200 contains three seconds of the audio signal and starts 64
milliseconds after a previous series starts. In this way, a fin-
gerprint is generated for a number of three-second portions of
the audio signal that begin every 64 milliseconds. To imple-
ment such a scheme, the fingerprint extraction system 200
may include memory buffers before and after the analysis
filterbank 205, where the buffers are updated with the next 64
milliseconds of the audio signal as the next audio frame 105
is received.

Acoustic Model

In various applications of the fingerprinting system, certain
frequency bands may be insignificant because they are imper-
ceptible, because an encoding process for the audio sample
removed the bands, or for some other reason. In one embodi-
ment, therefore, an acoustic model 235 is used to identity and
mark the insignificant frequency bands for a particular fin-
gerprint. Acoustic models, such as the psychoacoustic model,
are well known in various audio processing fields. A set of
model parameters for the acoustic model 235 can be calcu-
lated for high quality reference samples during the creation of
a fingerprint 115 and stored in the database 125. The insig-
nificant bands in the fingerprint 115 can be marked by zeroing
out their corresponding values (i.e., bits). This effectively
causes the bands to be ignored in any subsequent matching
process, since in the process of matching of a fingerprint with
the database records, only pairs of correspondent bands that
have non-zero values are used to distinguish the fingerprint
115. Masked bands (i.e., those having zero values) may also
be excluded from comparison altogether.

In one embodiment, the acoustic model is a psychoacoustic
model for the human auditory system. This may be useful
where the purpose of the fingerprinting system is the identi-
fication of audio targeted human auditory system. Such audio
may be compressed by one or more perceptual encoders
removing irrelevant audio information. The use of the human
psycho acoustic model allows identifying and excluding such
irrelevant bands from the fingerprints.

But the psychoacoustic model is just one type of an acous-
tic model that is suited to human perceptual encoded audio.
Another acoustic model is a model that mimics the properties
of'a specific recording device. Each band for such a recording
device acoustic model may have a weight factor assigned to it
depending on its importance. Yet another acoustic model
mimics the properties of specific environments, such as back-
ground noise found in a vehicle or room. In such an embodi-
ment, each band for the acoustic model may have a weight
factor assigned to it depending on its importance in the envi-
ronment for which the system is designed.

In one embodiment, parameters of the acoustic model 235
and filterbank 205 depend on the type and properties of the
analyzed audio signal 100. Different profiles comprising a set
of subband weight factors and a number of filterbank bands
and their frequency distributions are used to obtain a better
match of the properties of the targeted audio signal. For
speech-like audio, for example, the power of the signal is
mainly concentrated in low frequency bands, while music
might contain higher frequency relevant components depend-
ing on genre. In one embodiment, the parameters of the
acoustic model are calculated from the reference audio signal
and stored in content database together with generated fin-
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gerprints. In another embodiment, the parameters of the
acoustic model are calculated dynamically based on proper-
ties of analyzed audio signal during the matching process.

Accordingly, possible applications of the acoustic model
235 include tuning the audio recognition parameters for spe-
cific environment and/or recording device and encoding algo-
rithm properties. For example, knowing acoustical properties
of the cell phone audio path (microphone characteristics,
audio processing and compression algorithms, and the like)
allows the development of an acoustic model that mimics
these properties. Using this model during fingerprint com-
parison may significantly increase robustness of the matching
process of the generated fingerprints.

Fingerprint Indexing and Matching

In one embodiment, a fingerprint indexer 230 generates an
index for each fingerprint 115. The fingerprints 115 are then
stored in the fingerprint database 125, allowing for efficient
searching and matching of the contents of the fingerprint
database 125. In an embodiment, the index for a fingerprint
115 comprises a portion of the fingerprint 115. Accordingly,
the fingerprints 115 in the fingerprint database 125 are
indexed according to useful identifying information about
them.

In an embodiment described above in which each finger-
print 115 comprises a [(M—1)xN/4] matrix of bits, the indexer
230 uses the bits from the leftmost columns as the index. In
the example where each fingerprint 115 is a 12 by 8 matrix of
bits, the index for the fingerprint 115 may be the lefimost two
columns of bits (24 bits total). In this way, the bits used as the
index for each fingerprint 115 are a subset of the fingerprint
115 that are based on the low frequency spectral coefficients
of the feature vectors used to computer the fingerprint 115.
These bits thus correspond to the low frequency components
of'the spectrum of the log-mapped spectrogram bands, which
are stable and insensitive to moderate noise and distortions.
With a high level of probability, therefore, similar fingerprints
would have the same numerical value of the index. In this
way, the index may be used to label and group similar and
likely matching fingerprints in database.

FIG. 3 illustrates a method of matching a test fingerprint to
the fingerprint database 125 using the indexes described
above, in accordance with one embodiment of the invention.
To find a match in the fingerprint database 125 for a test
fingerprint, the matching algorithm begins by computing 310
an index value for the test fingerprint as described above.
Using this index value, a group of candidate fingerprints is
obtained 320, for example, where the group includes all of the
fingerprints in the database 125 that have the same index
value. As explained above, it is highly likely that any matches
in the database 125 are in this group of candidate fingerprints
because of the way the index value is computed.

To test for any matches in the group of candidate finger-
prints, a bit error rate (BER) between the test fingerprint and
each candidate fingerprint is computed 330. The BER
between two fingerprints is the percentage of their corre-
sponding bits that do not match. For unrelated completely
random fingerprints, the BER would be expected to be 50%.
In one embodiment, two fingerprints are matching where the
BER is less than about 35%; however, other numerical limits
may be used depending on the desired tolerance for false
positives and/or false negatives. In addition, calculations or
criteria other than BER can be used to compare two finger-
prints. For example, the inverse measure of BER, the match
rate may be also used. Moreover, certain bits may be weighted
more highly than others in the comparison of two fingerprints.

If 340 there are no matches within the predetermined
matching criteria, or if 350 there are no more indexes to
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modify, the matching algorithm has failed to find any matches
of the test fingerprint in the database 125. The system may
then continue to search (e.g., using less restrictive criteria in
obtaining the candidate fingerprints) or may stop. If 340 there
are one or more matching fingerprints, a list of the matching
fingerprints is returned 360.

In one embodiment, the system may repeat the search as
described above after modifying 370 the calculated finger-
print index in order to obtain a different set of candidate
fingerprints from which to search for a match. To modify 370
the calculated fingerprint index, one or multiple bits of the
calculated fingerprint index may be flipped. In one example
where the fingerprint index has 24 bits, after failing to find a
match using the original fingerprint index, the search step is
repeated 24 times with a different single bit of the 24-bit
fingerprint index flipped each time. Various other techniques
can be used to enlarge the search space.

In one embodiment, the fingerprint indexer 230 generates
one or more indexes by selecting index bits from one or more
fingerprints based on a set of frequency band weight factors
calculated by the acoustic model 235 and previously stored in
the database 125. When multiple indexes are used, including
indices obtained by bit flipping, the group of candidate fin-
gerprints includes all candidates obtained for every calculated
index.

In another embodiment, the area of search may be nar-
rowed by prescreening and selecting only fingerprint candi-
dates found in most or all candidate groups obtained for each
calculated index. Prescreening of the multiple fingerprint
candidates groups by using multiple indices, including indi-
ces obtained by bit flipping, may significantly improve the
performance of the database search. In one embodiment,
indexes and references to possible fingerprint candidates are
stored in computer memory allowing fast selection and pre-
screening of the fingerprint candidates. On the second step
(step 320), only fingerprint candidates that have the highest
probability to match given fingerprint are loaded into com-
puter memory and compared. This approach allows fast
search by keeping only small indices in computer memory,
while storing larger fingerprints on slow devices (e.g., a hard
drive or over a network).

Detecting Edges of an Audio Frame

In some applications, it may be desirable to detect the
edges of a matching audio fragment. Edge detection allows
the system to know precisely where a particular matching
audio fragment occurs in time. Depending on the quality of
the analyzed audio, embodiments of the edge detection algo-
rithm may be able to detect the edges of a matching audio
fragment with about 0.1 to 0.5 seconds of precision.

As explained above, embodiments of the fingerprinting
technique accumulate audio samples in sub-band processing
buffers. Because of this buffering, the output of the finger-
printing algorithm is delayed and smeared on audio fragment
edges. This effect is illustrated in FIG. 4, which is a graph of
the bit error rate (BER) over time between reference finger-
prints for an audio fragment and a series of fingerprints gen-
erated over time for an incoming sample audio stream. In the
embodiment illustrated, the sub-band buffers hold three sec-
onds of audio, and a match is declared when two fingerprints
have a bit error rate (BER) of 35% or less.

Initially, at time T0, the sub-band processing buffers are
empty, and the generated fingerprint thus produces zero
matches with the original audio (i.e., the BER is expected to
be approximately equal to 50%). As audio samples are added
to the sub-band buffers the BER decreases, indicating a better
match. After sufficient time passes, the BER decreases below
the threshold 35% at time T1, indicating a match. Finally, at
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time T2, the BER reaches a plateau as the buffers are filled by
samples. When the fingerprinting algorithm passes the end of
the correspondent audio fragment, at time T3, it begins to
produce fingerprints that match less and thus have an increas-
ing BER, which reaches the recognition threshold 35% at
time T4. The duration of obtained match curve (T1-T4) and
the duration of the plateau (1T2-T3) are each shorter than the
duration of the matched audio fragment (T0-T3).

In one embodiment, an edge detection algorithm is used to
determine the exact edges of a matching audio frame or
fragment. A BER curve such as illustrated in FIG. 4 is
obtained. The BER curve is segmented into regions, which
correspond to the beginning of match with decreasing BER
(e.g., T1-T2), the plateau with approximately constant BER
(e.g., T2-T3), and the end of match with increasing BER (e.g.,
T3-T4). Because a real BER curve will generally be noisy, it
is segmented using an appropriate technique such as a regres-
sion analysis. In one embodiment, all samples that produce
BER above 35% are ignored because they may not be reliable.
The beginning of the matching audio fragment (i.e., time T1)
may then be calculated using linear regression as the crossing
ofaline thatfits in the best way a decreasing BER region (e.g.,
T1-T2) with a horizontal line that corresponds to 50% BER.
A similar approach may be applied to estimate time T5, taking
the intersection of a line that fits in the best way an increasing
BER region (e.g., T3-T4) and a horizontal line that corre-
sponds to 50% BER. In this case, however, time T5 corre-
sponds to the end of the fragment delayed by the duration B of
the sub-band buffer, not the actual end of the matching audio
fragment. The location of the end of the fragment (i.e., time
T3) can be calculated by subtracting the sub-band buffer
duration B from the obtained estimate T5.

In another embodiment, the end of the matching audio
fragment is estimated as the end of the region T2-T3, and the
beginning of the audio fragment is calculated by subtracting
the duration of the sub-band buffer B from time T2, which
corresponds to the beginning of the region T2-T3.

SUMMARY

Although discussed in terms of vectors and matrices, the
information computed for any fingerprint or sub-fingerprint
may be stored and processed in any form, not just as a vector
or matrix of values. The terms vector and matrix are thus used
only as a convenient mechanism to express the data extracted
from an audio sample and is not meant to be limiting in any
other way. In addition, although the power spectrum is dis-
cussed in terms of a spectrogram, it is understood that the data
representing the power spectrum or spectral analysis of an
audio signal may be represented and used not only as a spec-
trogram, but in any other suitable form.

In one embodiment, a software module is implemented
with a computer program product comprising a computer-
readable medium containing computer program code, which
can be executed by a computer processor for performing any
or all of the steps, operations, or processes described herein.
Accordingly, any of the steps, operations, or processes
described herein can be performed or implemented with one
or more software modules or hardware modules, alone or in
combination with other devices. Moreover, any portions of
the system described in terms of hardware elements may be
implemented in software, and any portions of the system
described in terms of software elements may be implemented
in hardware, such as hard-coded into a dedicated circuit. For
example, code for performing the methods described can be
embedded in a hardware device, for example in an ASIC or



US 9,208,790 B2

13

other custom circuitry. This allows the benefits of the inven-
tion to be combined with the capabilities of many different
devices.

In another embodiment, the fingerprinting algorithm is
embedded in and run on any of a variety of audio devices,
such as a cellular phone, a personal digital assistant (PDA), a
MP3 player and/or recorder, a set-top box, or any other device
that stores or plays audio content. Embedding the fingerprint-
ing algorithm on such a device may have a number of benefits.
For example, generating audio fingerprints directly on a cel-
Iular phone would provide better results compared to sending
compressed audio from the phone to a fingerprinting server
over cell network. Running the algorithm on the cellular
phone eliminates distortions caused by GSM compression,
which was designed to compress speech and performs poorly
on music. Accordingly, this approach may significantly
improve the recognition of audio recorded by a cellular
phone. It also reduces the load on servers as well as network
traffic.

Another benefit of such an embedded approach is the abil-
ity to monitor listening experience without violation of pri-
vacy and user rights. For example, a recording device may
record audio, create fingerprints, and then send only finger-
prints to a server for analysis. The recorded audio never leaves
the device. The server may then identify targeted music or
advertisements using the sent fingerprints, even though it
would be impossible to recover the original audio from the
fingerprints.

The foregoing description of the embodiments of the
invention has been presented for the purpose of illustration; it
is not intended to be exhaustive or to limit the invention to the
precise forms disclosed. Persons skilled in the relevant art can
appreciate that many modifications and variations are pos-
sible in light of the above teachings. It is therefore intended
that the scope of the invention be limited not by this detailed
description, but rather by the claims appended hereto.

What is claimed is:

1. A method comprising:

determining, by a computing device, a test audio finger-

print;

computing, by the computing device, an index value for the

test audio fingerprint;
using the index value, determining, by the computing
device, a group of candidate audio fingerprints;

computing, by the computing device, a bit error rate
between the test audio fingerprint and each candidate
audio fingerprint in the group; and

determining, by the computing device, that the test audio

fingerprint matches a candidate audio fingerprint based
on the bit error rate.

2. The method of claim 1, wherein the bit error rate
between two audio fingerprints is a percentage of their cor-
responding bits that do not match.

3. The method of claim 1, wherein the determining that the
test audio fingerprint matches the candidate audio fingerprint
further comprises determining that the bit error rate is less
than approximately 35%.

4. The method of claim 1, further comprising determining
that the test audio fingerprint does not match the candidate
audio fingerprint when the bit error rate between the test audio
fingerprint and the candidate audio fingerprint is approxi-
mately 50%.

5. The method of claim 1, wherein the determining that the
test audio fingerprint matches the candidate audio fingerprint
further comprises determining a weight of a bit in the candi-
date audio fingerprint and the test audio fingerprint.
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6. The method of claim 1, further comprising modifying,
by the computing device, the index.

7. The method of claim 6, wherein the modifying of the
index further comprises flipping a bit in the index.

8. A computing device comprising:

a processor;

a storage medium for tangibly storing thereon program
logic for execution by the processor, the program logic
comprising:

test audio fingerprint determining logic executed by the
processor for determining a test audio fingerprint;

computing logic executed by the processor for computing
an index value for the test audio fingerprint;

group candidate determining logic executed by the proces-
sor for determining, using the index value, a group of
candidate audio fingerprints;

computing logic executed by the processor for computing
a bit error rate between the test audio fingerprint and
each candidate audio fingerprint in the group; and

match determining logic executed by the processor for
determining that the test audio fingerprint matches a
candidate audio fingerprint based on the bit error rate.

9. The computing device of claim 8, wherein the bit error
rate between two audio fingerprints is a percentage of their
corresponding bits that do not match.

10. The computing device of claim 8, wherein the match
determining logic for determining that the test audio finger-
print matches the candidate audio fingerprint further com-
prises determining logic for determining that the bit error rate
is less than approximately 35%.

11. The computing device of claim 8, further comprising
unmatch determining logic executed by the processor for
determining that the test audio fingerprint does not match the
candidate audio fingerprint when the bit error rate between
the test audio fingerprint and the candidate audio fingerprint
is approximately 50%.

12. The computing device of claim 8, wherein the match
determining logic further comprises determining logic for
determining a weight of a bit in the candidate audio finger-
print and the test audio fingerprint.

13. The computing device of claim 8, further comprising
modifying logic executed by the processor for modifying the
index.

14. The computing device of claim 13, wherein the modi-
fying logic for modifying the index further comprises flipping
logic for flipping a bit in the index.

15. A non-transitory computer readable storage medium
comprising computer-executable instructions executed by a
processor, the computer-executable instructions comprising:

determining, by the processor, a test audio fingerprint;

computing, by the processor, an index value for the test
audio fingerprint;

using the index value, determining, by the processor, a
group of candidate audio fingerprints;

computing, by the processor, a bit error rate between the
test audio fingerprint and each candidate audio finger-
print in the group; and

determining, by the processor, that the test audio finger-
print matches a candidate audio fingerprint based on the
bit error rate.

16. The non-transitory computer readable storage medium
of claim 15, wherein the determining that the test audio fin-
gerprint matches the candidate audio fingerprint further com-
prises determining that the bit error rate is less than approxi-
mately 35%.

17. The non-transitory computer readable storage medium
of claim 15, further comprising determining that the test
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audio fingerprint does not match the candidate audio finger-
print when the bit error rate between the test audio fingerprint
and the candidate audio fingerprint is approximately 50%.

18. The non-transitory computer readable storage medium
of claim 15, wherein the determining that the test audio fin-
gerprint matches the candidate audio fingerprint further com-
prises determining a weight of a bit in the candidate audio
fingerprint and the test audio fingerprint.

19. The non-transitory computer readable storage medium
of claim 15, further comprising modifying, by the computing
device, the index.

20. The non-transitory computer readable storage medium
of claim 19, wherein the modifying of the index further com-
prises flipping a bit in the index.
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